
NASA Technical Memorandum 4 103

Automating the
Multiprocessing
Environment

Dale J. Arpasi
Lewis Research Center
Cleveland, Ohio

National Aeronautics and
Space Administration
Office of Management
Scientific and Technical
Information Division

1989

Summary
An approach to automate the programming and operation

of tree-structured networks of multiprocessor systems is
discussed. A conceptual, knowledge-based operating
environment is presented, and requirements for two major
technology elements are identified as follows: (I) An intelligent
information translator is proposed for implementing
information transfer between dissimilar hardware and
software, thereby enabling independent and modular
development of future systems and promoting a language-
independence of codes and information; (2) A resident system
activity manager, which recognizes the systems capabilities
and monitors the status of all systems within the environment,
is proposed for integrating dissimilar systems into effective
parallel processing resources to optimally meet user needs.
Finally, key computational capabilities which must be provided
before the environment can be realized are identified.

Introduction
Current operating system technology (e.g., DOS) provides

only primitive user interfaces that are designed to furnish basic
peripheral services for information and task management.
More complex tasks are considered the responsibility of the
user-selected application software package. Consequently,
these packages tend to be autonomous, each with independent
information formats (although some external integration may
be possible through the use of standard file formats). This type
of computing environment functions efficiently if the following
conditions hold true:

(1) The application software packages make effective use
of the available hardware.

(2) The applications (either standing alone or in conjunction
with the DOS) provide sufficient integration of services and
information to meet user requirements.

(3) The user is properly versed in the operation of the DOS
and the applications to make efficient use of the environment.

These conditions are usually met by providing internally
integrated, multifunction software packages, designed for a
specific computer. These minimize the need to port
information outside of the package and provide a common,
structured, high-level interface to the functions. Unfortunately,
the need to integrate functions and information between
different packages cannot be completely avoided without

imposing a shell of self-sufficiency around each user, thereby
restricting technology utilization and the free interchange of
information. Another problem with the internally integrated,
multifunction approach is that it can stifle upward mobility
to new technology software by imposing cost and effort
penalties in the areas of porting existing data files to
replacement software, and in the retraining of personnel.
Similarly, upward mobility to new technology computing
hardware is equally difficult if existing software packages
cannot be easily transported.

The problems of functional integration and upward mobility
are magnified when multiprocessing systems are considered.
Achieving good performance on a multiprocessing system
requires a good data-flow match between the computational
activity and the computing hardware. In a multiuser,
multitasking, multiprocessing environment, efficient use of the
available processors could require different allocations of the
activity’s computations depending on the overall computational
load. This would require an automated software transportation
mechanism that insures maximum computational efficiency for
whatever hardware is available. Since the computational
activity may be performed on different processors and over
different data paths at different times, functional integration
is impossible without a good deal of intelligence built into the
system. These additional complexities and requirements cannot
be foisted on the internally integrated multifunction approach
to a computational environment without increasing the costs
associated with upward technical mobility to a great degree.
Clearly a more modular and intelligent approach to the
establishment of future computational environments is needed.

Knowledge-based system technology can be applied to the
development of a multiprocessing environment to overcome
these problems. For example, a learning capability can be
provided within the environment to automatically adapt
software to the available hardware. A communication
mechanism, using software-specific knowledge bases, can be
incorporated to allow functional integration of any
computational activities. These technologies would
consequently lead to lower cost, special purpose software
packages and consequential improvements in upward mobility
to new technology. With knowledge-based technologies, user
interfaces can evolve to support programming languages of
choice rather than having the system impose a common
language on all users. Finally, by developing “smart”
interfaces, information can be freely transmitted across utility
and system boundaries. This approach can enable the

I

integration of computing systems into a single, efficient
problem solving unit.

Environment Overview
It is assumed that a universal sympathetic environment

(USE) will be built around a tree-structured multiprocessor
configuration as shown in figure 1. It is further assumed that
each branch of the tree is a multiprocessor system containing
a control processor (C) and a number of service processors
(S) . Each service processor may, in turn, be another branch
(multiprocessor system) of the tree. The domain of the USE
is therefore limited only by the communication paths provided
to it. It is open ended, thereby allowing domain extension or
retraction. Each control processor in the tree structure is
assumed to have complete control over its local resources (i.e.,
all of the other processors and systems which branch out from
it, where system refers to a control processor and all of its
local resources).

Each control processor controls the computations of its local
resources in response to the requests of control processors
farther down the tree and any local user requests. Systems may
request the services of other systems in other parts of the tree
by passing these requests up through the chain of control until
the control for the desired resource is encountered. This tree-
structured multiprocessing concept is sufficiently general to
be a superset of most practical configurations and will be the
basis for USE design.

Before proceeding, certain terminology must be established.
A utility is a component of the USE which provides a specific
service. An activity is an application (e.g., word processing)
that the user brings to the environment. The activity interfaces
to the computing system as one or more computational jobs.
These jobs consist of linked tasks which may preexist in a
library. The tasks consist of parallel computational paths with
data transfer between them. The paths translate furnished
arguments into results. Each path contains operations which
must be performed serially. The operations are generic (e.g.,
add and multiply) and must be translated into machine code
for a particular processor. Thus, one task could have

Figure 1 .-Tree-structured multiprocessor configuration showing control
processor (C) and service processor (S) .

alternative path representations to ease translation to different
processor types (e.g., vector and scalar).

The USE must provide three major areas of service as
follows: (1) computational services, to manage user activities;
(2) information management services, to maintain and
disseminate information; and (3) environment adaptation
services, to build and maintain the knowledge base.

Computational Services

Figure 2 shows the major utilities in the computational
services area. Each control processor in the USE will interface
its resources to the others through these services. The services
are targeted, through knowledge bases, to meet specific local
requirements. The operational interface (01) has the respon-
sibility of controlling the flow of information between the
operating system and the local peripherals (disks, keyboards,
and terminal), which exist at each particular branch of the
multiprocessing tree. If a user has direct access to a control
processor then he/she may initiate and interact with computa-
tional activities on that processor through the 01. These activities
may use the local peripherals and any or all of the multi-
processing resources of the USE to perform their functions.

Activities are always buffered by the information translator
(IT). This utility provides translation or interpretation of
information being transmitted among the local peripherals
(including the user), the available computational resources,
and the activity. As shown in figure 2 , four relational data
bases (translators A, B, C, and D) govern the translation of
information on the four data paths of the activity. Translator

SYSTEM PERIPHERALS

t l
OPERATIONAL INTERFACE -

INFORMATION TRANSLATOR c
4 I I SYSTEM ACTlVlN MANAGER I 1

I # I d

OTHER SYSTEMS LOCAL RESOURCES

Figure 2.-USE computational services.

I provided in the USE. These IT interfaces allow detailed
information transfer between activities running on the same
or different processors without imposing these requirements
on the activities themselves.

The multiprocessing resources of the USE are integrated
by implementing the system activity manager (SAM) on each
control processor in the environment. This utility performs
the following three system integration functions:

(1) Resource management.-The SAM is responsible for
optimally assigning multiprocessing resources to perform the

Information Management

There are three types of information stored in three libraries
within the USE. The libraries are the user library, activity
library, and system library.

(1) The user library contains descriptions and results of user
applications that are of significance in the formulation of new
technology applications. This library is organized according
to scientific discipline.

(2) The activity library contains descriptions of the
computational activities available to the user, and includes
languages and optimized tasks and code modules that can be
used with those activities. This library is organized according
to multiprocessing system.

I

(3) The system library contains targeting information
(knowledge bases) which define computational hardware,
activities, peripherals, and others. The knowledge bases adapt
the application of the utilities to specific USE implementations.
This library is organized according to system with cross-
reference to the activity library.

Each of the libraries are managed by a librarian. The
librarian is an activity which functions within the computational
services environment described above. It provides the typical
electronic library services such as card catalogs, and cross-
referencing. It also insures that new volumes of information
conform to library standards, and provides translations of
existing volumes to meet user, activity, or system needs.

Environment Adaptation

This operating system provides the facilities for developing
the USE knowledge base. The following information has been
identified as basic to USE operation and must be included in
the knowledge base:

(1) Processors
(a) Hardware: data formats, operations, structure, memory
@) Code generator: assembly language, macro definitions

(a) Configuration: information paths, control processors
(b) Task generation: input and output formats, macros
(c) Peripheral hardware: specifications

(a) Capabilities: information paths, system applications
(b) Allocation rules: priorities, options, contingencies
(c) Languages: vocabulary, syntax, semantics, grammar

This information is necessary for everything from the simplest
uniprocessing environment to a multisystem environment
accessible over a network. Each time the environment is
changed or extended, at either the processor or system level,
the knowledge base must be updated.

Because of the complexity of the information involved and
the need for accuracy, the establishment of the knowledge base
will be made as simple as possible. Most of the information
required will have to be manually entered the first time. After
that, information on similar components can be derived from
the system library and edited if necessary. Manual entry of
knowledge base information will follow an instructional
handbook to ensure completeness. The IT will be used to
monitor syntax and to establish the data structures of the
knowledge base. Some information can be derived
automatically. Execution and data transfer time can be
measured by running benchmark programs on the hardware.
A degree of adaptability can thereby be established in
knowledge-base generation. Benchmarking utilities can also
be valuable in establishing such activities as parametric studies
of software and hardware, diagnostics, and system emulation.
All of these utilities as well as those used in other operating
systems will be available for activity development through the
system library.

(2) Multiprocessing systems

(3) Multisystem environment

3

System Activity Manager

The potential for highest multiprocessing efficiency exists
in a multi-user, multitasking, multiprocessing environment.
Through high data rate networking, multiprocessing
environments will eventually consist of loosely coupled
networks of multiprocessing systems. The integration of a wide
variety of individual multiprocessing systems into that
environment, however, requires a new operational approach,
in which all capabilities available within the environment are
recognized and utilized to efficiently perform all tasks assigned
to the network.

For example, let systems A(1), ..., A @) , be optimized to
perform all tasks beginning with the letter A; let systems
B(I), . . . , B(m), be optimized to perform all tasks beginning
with the letter B; and let system C be optimized to perform
all tasks beginning with the letter C. Consider a job submitted
to system C that consists of the following:

Begin job
With the information in files 1, 2, and 3 do tasks Ax, Ay,

With the results of Ax and Bx, do task Cx;
With the results of Bx, do task By;
With the results of Ay, By, and Cx, do task Cy;

and Bx, respectively;

End job.
In a uniprocessing environment consisting only of system C,
the A and B tasks would be performed suboptimally. If C could
not take advantage of the parallelism in the job, the tasks would
also be performed serially.

In an integrated multiprocessing environment, tasks Ax, Ay,
and Bx might be assigned to systems A(1), A(2) , and B(1),
respectively. If only one A-system was available, C could be
assigned the shorter of the A-tasks. System C would then do
task Cx once its arguments were available, with the B(1) system
picking up the By task after completing the Bx task. Finally,
when Ay, By, and Cx were finished, system C could perform
task Cy to complete the job. Obviously, the multiprocessing
environment would be more efficient than the single C-system
(assuming that data transfer times over the network are
negligible). Integrating the computational capabilities of
multiple systems can lead to other benefits as well. By
distributing tasks among several systems, one allows for the
development and use of highly efficient, special purpose
systems and solvers. Large, general purpose systems can be
replaced and new technology can more easily be incorporated
into the environment. Maintenance, repair, and upgrade costs
should be reduced. Utilization of the computing resources will
be higher because of the sharing of workloads.

The challenges associated with developing an integrated,
open-ended multiprocessing environment are not insignificant.
Aside from the mechanics of high speed data transfers (which
will eventually be solved through hardware technology), logic
and software need to be developed to automate the prioritizing,
scheduling, and other management tasks for arbitrary

multiprocessor configurations. Fortunately, many of the
concepts of data-flow parallelism, computational packing, and
system definition have been developed and demonstrated in
the Real-Time Multiprocessor Programming Language
(RTMPL) project and are directly applicable to this effort.
Using this technology as a starting point, the objectives are
achievable.

In the USE, task scheduling is done by the system activity
manager (SAM). This utility resides, to some extent, in each
system within the environment. A functional diagram of the
SAM is given in figure 3. The task level partitioner accepts
jobs submitted from a user activity and partitions them into
computational paths called S-tasks. (A path here is defined
as a series of computations which contains no parallelism).
The S-tasks are integrated with S-tasks from other systems
and are placed in the S-task queue of pending computations.
Embedded tasks, identified by the L-system run-time monitor,
are also deposited in the S-task queue for assignment.
Embedded tasks are those which are result dependent or which
otherwise cannot be predicted from the job specification. The
S-task queue is monitored by the intersystem allocator (ISA)
facility. This facility considers the status and capabilities of
all computational resources available within the USE,
including those local resources under its control. Task
requirements and resource specifications are available from

USER SELECTED
ACTIVITY

I JOBS

TASK-LEVEL

1 COMPUTATIONAL PATHS
OFF-SYSTEM EMBEDDED
TASK REQUESTS

I
TASKS AWAITING
ALLOCATION

INTER-SYSTEM
ALLOCATOR

LOCAL REVISED
ALLOC. ALLOC.

EXTERNALLY OFF- j :LOCAL LOCALLY
ASSIGNED SYSTEM I :SYSTEM ASSIGNED

I 1 RESULTS] TASK
STATUS

RESULTS

OFF- OPERATIONAL USER OPERATIONAL LOCAL
SYSTEM INTERFACE SELECTED INTERFACE RESOURCE

ADAPTER ACTIVITY ADAPTER

Figure 3.-System activity manager.

4

the libraries. On this basis, S-tasks are either designated as
local tasks and placed in the L-task queue, or as external tasks
and placed into the X-task queue. The ISA also conducts a
continual review of the status of tasks in these queues
(completed or not) and the status of local and external resources
(available or not) and may shift S-tasks between the queues,
accordingly.

When the tasks in the queues have their arguments available,
they are marked as data-flow enabled, thus permitting access
by their run-time monitors. The run-time monitors control the
execution of assigned tasks on resources under their control.
The external system run-time monitor (XRM) is responsible
for off-system computations, and the L-system run-time
monitor (LRM) is responsible for computations on the local
resources. Enabled tasks are selected from the queues on a
priority basis (priorities having been previously established
during job formulation), and are assigned to available
resources. The XRM sends its tasks to the off-system adapter
for transmission to other systems. This adapter is the focal
point of all intersystem information transfers. The LRM sends
its tasks to the local resource adapter for local distribution.
Both adapters must be targetable to specific hardware and
formats. To this effect, they will use the facilities provided
by the information translator. The run-time monitors provide
other services as well. They are responsible for furnishing
resource status information to the ISA. They also furnish
computational results to the results distributor for transmission
back to the activity, and integrate results to form arguments
for other tasks to meet data-flow requirements. Finally, the
run-time monitors provide interactive communication between
the user activity (via the operational interface) and its tasks.
This communication provides system status information and
permits interaction with system operation. Operational inter-
action with the tasks, such as viewing of intermediate results
and the changing of parameters, is accomplished by using
predeveloped system tasks in the job specification.

The SAM is responsible for carrying out the efficient
utilization of computational resources within its purview
(including the control processor on which it resides). The
purview of a SAM is based on the resources required to best
perform an assigned job and is bounded by the communication
paths available. A system cannot use the resources of another
system unless a path to those resources exists. Of course,
information transfer time must be considered. If that time is
very large, then communication is essentially nonexistent.
Purview must be subjectively established for each intended
application and it must be reconfigurable. This requires that
rules be established to optimally structure the environment for
each application.

By proper design, the SAM can provide full computational
integration and local management of systems within the USE.
If the SAM is portable (able to be implemented on any control
processor), it can provide a common multiuser, multitasking
multiprocessor operating system for the entire environment.

Information Translator

In the USE environment, the passing of information between
information processing tasks is automated, as is the interfacing
of these tasks, to the SAM. The USE utility which will provide
this automation is called the information translator (IT).

A primary requirement of the IT is that it provide the USE
processors with a transparency to application programming
languages. If it is to be useful to the scientific community,
it should, at the very least, accept information in the most
common programming languages of Fortran, Pascal, and Ada.
Allowing the user to program in a language with which he/she
is comfortable should maximize the effectiveness of the user
and increase acceptance of the environment. Another
requirement of the IT is that it provide extensive diagnostics
and programming aids so that it can be a comfortable, error-
free user interface. Finally, the IT should be easily retargetable
to the informational requirements of any new activity. This
feature of the IT could make future activity development
simpler by providing a ready made, proven information
management system.

The IT design includes a facility, called READ-IT, to
convert textural information into the basic data structures of
an information processor and a facility, called WRITE -IT,
to perform the inverse function. Here, data structure is meant
to describe the organization and identification of information
that are required before processing can proceed.

Each of the above facilities uses a relational data base which
defines the language of communication. The language
definition contains vocabulary and usage rules. The vocabulary
is linked to classify and otherwise establish semantic
relationships. The rules establish syntax requirements and
activity specific parsing and grammatical requirements which
relate the language text to the data structures of the activity.
Parsing rules are used by READ - IT and grammatical rules
are used by WRITE-IT. Each time a language is defined,
its knowledge base is established and each time it is used by
an activity, the knowledge base is expanded.

To understand the functions of the READ-IT and
WRITE-IT facilities, consider the elements of a conversation
as depicted in figure 4. Information (an idea) is presented by
a source processor in terms of its output data structures (mental
images). The data structures are translated (spoken) by
WRITE-IT into a text statement in the source language. The
text statement is translated (heard) by READ -IT into the data
structures (mental images) of an object processor (listener).
The object processor operates on (thinks about) the data
structures, forms a response, (also in terms of data structures)
and the process is repeated with WRITE -IT translating data
structures into a text statement in the object language.

Even though translation would be unnecessary if the parties
were speaking the same language (source language equals
object language), interpretation would be required since the
“spoken” information would still have to be converted to/from

5

 SOURCE INFORMATION PROCESSOR^

KNOWLEDGE BASE:
LANGUAGE A

TEXT EXPRESSION
OF THE IDEA IN THE
SOURCE LANGUAGE

KNOWLEDGE BASE:
LANGUAGE B

IDEA EXPRESSED
IN THE INPUT

DATA-STRUCTURES OF
THE W E C T PROCESSOR

1
RESPONSE EXPRESSED
IN THE INPUT

OF THE SOURCE
PROCESSOR

DATA-STRUCTURES

1-1
OBJECT LANGUAGE

TEXT RESPONSE IN THE :
OBJECT LANGUAGE

RESPONSE EXPRESSED
IN THE OUTPUT

OF THE OBJECT PROCESSOR
DATA-STRUCTURES

1 I I OBJECT INFORMATION PROCESSOR]

Figure 4.-A conversation using the IT facilities

data structures for information processing. Of course,
languages (and therefore interpretation) would be unnecessary
and communication would be highly efficient if ideas could
be shared directly through data structures (i.e., telepathy).

A form of telepathy is present in complex computer
programs that are functionally modularized. There, modules
are tied together through a main program and shared common
data structures. Information generated by one module is
directly usable by the other. In the USE, both telepathic and
nontelepathic communication are utilized with groups of
telepathic modules (called facilities) working together to form
information processing services (called utilities). Tasks are not
telepathic. Information translation is always required for
communication between utilities and tasks, but not between
facilities. The IT provides for information transfer among all
nontelepathic information processors in the USE, including
the users.

If the IT facilities are used with common data structures (as
shown in fig. 5(a)), the IT becomes a translator from one
language to another. If these facilities are used with a common
language (as shown in fig. 5(b)) , the IT becomes an interpreter
among the data structures of two or more information
processors. Using the latter approach, the IT can effectively
interface the data structures of all information processors in
a USE system to a single, common language, information
channel. Interpretation to/from data structures would be
accomplished by using a knowledge base (i.e., relational data
base) between the system language and the information
processors. If the establishment of this data base can be made
simple and straight forward then the following advantages will
be available:

(1) Communications between information processors can
be carried out in languages that are best suited for that purpose.

6

COMMON DATA OBJECT TEXT SOURCE TEXT
(LANGUAGE A) STRUCTURE (LANGUAGE 8)

OUTPUT DATA INPUT DATA
STRUCTURES STRUCTURES
(INFORMATION COMMON (INFORMATION
PROCESSOR A) SYSTEM TEXT PROCESSOR B)
I

I KNOWLEDGE BASE: COMMON LANGUAGE I

(a) As a language translator.
(b) As an interpreter.

Figure 5.-Information translator applications.

(2) New information processors can be incorporated merely
by establishing a relational data base between the system
languages and the new processor.

(3) Individualized communication interfaces do not have to
be developed for each new information processor.

(4) Information storage can be standardized and even
minimized by using the IT as an interface to a system wide,
minimum length, information storage language.

(5) The IT may be used to communicate between different
computer systems, thereby expanding local processing
capabilities, promoting information dissemination, and
reducing the need for duplication of capabilities.

To summarize, the IT will provide a versatile
communication link among information processors. Using the
IT as an intermediary provides local independence when
selecting a programming language. This should open the door
to increased portability of codes while avoiding the need to
standardize on software.

Core Activities
The USE is intended to carry out any user selected activity,

on whatever computational resources are available, in an
optimum fashion. As computational technology advances,
users will conceive of more and more sophisticated activities
that reflect their knowledge and new ideas.

New activities can be incorporated into the USE as they
become available. However, there are certain core activities
that must be developed and incorporated in the USE before
the environment becomes operational. These include activities

associated with knowledge-base development, library
development, job specification, and run-time interaction.
While current technology may not allow the “best” design
of these activities, it is important to put an initial capability
in place. Therefore, rudimentary versions will be incorporated
into the prototype environment until better replacements are
available. The USE design, being open ended and modular,
makes this staged approach to activity development reasonable.

The following activities have been identified as being
necessary to the establishment of the USE:

(1) Task development.-The development of computational
tasks, including multilingual (Fortran and Ada)
programming, automated loop decomposition,
vectorizing, and path partitioning

(2) Job development.-Providing a job specification inter-
face to the user, enabling direct access to the SAM, and
the construction of interactive operational requests that can
be integrated with other jobs

(3) Information management.-Controlling, accessing, and
maintaining tasks and system information

(4) Environment adaptation.-Developing the knowledge
base that can be used to adapt the USE to specific multi-
processing hardware and to meet specific user needs

The Information Management and Environment Adaptation
activities are actually USE operating systems which function
under the computational services operating system.

The following analytical activities also need to be included
in initial USE development:

(1) System emulation.-The development of software simu-
lations of candidate multiprocessing systems to support
USE system design, benchmark applications, and to guide
research and development

(2) Task evaluation.-Automated timing and measurement
of task efficiency, while running on actual or simulated
systems, to support development of multiprocessing
algorithms

These activities will build on the existing utilities and
features of the environment to simplify their development and
enhance their operation. Activity development, itself, will
provide a test and evaluation of the USE utilities, and will set

standards for interfacing to the environment. These standards
will then guide others in subsequent efforts to further develop
multiprocessing technology.

Concluding Remarks
The multiprocessing environment presented in the previous

paragraphs is intended to provide a sophisticated interface
between the scientist and state-of-the-art computational
technology. It is designed to automate many of the tasks that
users of multiprocessor systems must now accomplish
manually. The environment is versatile, portable, and
upgradable, thereby allowing for improvements in both
hardware and software,

It is hoped that the development and demonstration of
prototype versions of the environment will encourage the use
of multiprocessing and promote the integration of efforts and
results from a variety of scientific disciplines. In the area of
computational fluid dynamics, for example, the environment
should stimulate the development and testing of highly parallel
flow solver codes. The environment should also promote code
validation by simplifying the exchange of information between
analysis and experiment.

Although the technology is not yet available for complete
development of this environment, it is hoped that the prototype
effort will provide a focus for the development of needed
technologies. As progress is made in the areas of parallel
processing, knowledge-based systems, and artificial
intelligence, the prototype environment will serve as a test bed
for practical application and evaluation of these technologies.

The USE prototype design, described herein, is still being
developed. Many design details are still to be worked out. The
author hopes that this document will generate interest in the
subject, and inquiries and technical exchanges that might
contribute to the design of the environment are welcomed.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, January 6, 1989

References

1. Arpasi, D.J.; and Cole, G.L.: Automating the Parallel Processing of Fluid 3. Arpasi, D.J.: Real-Time Multiprocessor Programming Language
and Structural Dynamics Calculations. NASA TM-89837, 1987.

2. Arpasi, D.J.; and Milner, E.J.: Partitioning and Packing Mathematical 4. Cole, G.L.: Operating System for a Real-Time Multiprocessor Propulsion
Simulation Models for Calculation on Parallel Computers. NASA

(TRMPL)-Users Manual. NASA TP-2422, 1985.

System Simulator-Users Manual. NASA TP-2426, 1984.
TM-87170, 1986.

7

National Aeronautics and
Space Administration

1. Report No.

NASA TM-4103

Report Documentation Page
2. Government Accession No.

9. Security Classif. (of this report)

Unclassified

7. Author@)

Dale J. Arpasi

20. Security Classif. (of this page) 21. No of pages 22. Price'

Unclassified 12 A03

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

March 1989

6. Performing Organization Code

8. Performing Organization Report No.

E-4426

10. Work Unit No.

505-62-21

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

16. Abstract

An approach to automate the programming and operation of tree-structured networks of multiprocessor systems is
discussed. A conceptual, knowledge-based operating environment is presented, and requirements for two major
technology elements are identified as follows: (1) An intelligent information translator is proposed for implemen-
ting information transfer between dissimilar hardware and software, thereby enabling independent and modular
development of future systems and promoting a language-independence of codes and information; (2) A resident
system activity manager, which recognizes the systems capabilities and monitors the status of all systems within
the environment, is proposed for integrating dissimilar systems into effective parallel processing resources to
optimally meet user needs. Finally, key computational capabilities which must be provided before the environ-
ment can be realized are identified.

7. Key Words (Suggested by Author(s))

Simulation
Parallel processing
Software

18. Distribution Statement

Unclassified -Unlimited
Subject Category 61

"For sale by the National Technical Information Service, Springfield, Virginia 221 61 S A FORM 1626 OCT 86

NASA-Langley, 1989

